Referenser

 

0-4 mån

  1. Girish, M. et al. Impact and feasibility of breast crawl in a tertiary care hospital. J Perinatol 33, 288-291, doi:10.1038/jp.2012.109 (2013).
  2. Moore, E. R., Bergman, N., Anderson, G. C. & Medley, N. Early skin-to-skin contact for mothers and their healthy newborn infants. The Cochrane database of systematic reviews 11, Cd003519, doi:10.1002/14651858.CD003519.pub4 (2016).
  3. Flacking, R., Dykes, F. & Ewald, U. The influence of fathers’ socioeconomic status and paternity leave on breastfeeding duration: a population-based cohort study. Scand J Public Health 38, 337-343, doi:10.1177/1403494810362002 (2010).
  4. Geddes, D. T., Kent, J. C., Mitoulas, L. R. & Hartmann, P. E. Tongue movement and intra-oral vacuum in breastfeeding infants. Early Hum Dev 84, 471-477, doi:10.1016/j.earlhumdev.2007.12.008 (2008).
  5. Pransky, S. M., Lago, D. & Hong, P. Breastfeeding difficulties and oral cavity anomalies: The influence of posterior ankyloglossia and upper-lip ties. International journal of pediatric otorhinolaryngology 79, 1714-1717, doi:10.1016/j.ijporl.2015.07.033 (2015).
  6. Bergman, N. J. Neonatal stomach volume and physiology suggest feeding at 1-h intervals. Acta Paediatr 102, 773-777, doi:10.1111/apa.12291 (2013).
  7. Hernell, O., Fewtrell, M. S., Georgieff, M. K., Krebs, N. F. & Lonnerdal, B. Summary of Current Recommendations on Iron Provision and Monitoring of Iron Status for Breastfed and Formula-Fed Infants in Resource-Rich and Resource-Constrained Countries. J Pediatr 167, S40-47, doi:10.1016/j.jpeds.2015.07.020 (2015).
  8. Lonnerdal, B., Georgieff, M. K. & Hernell, O. Developmental Physiology of Iron Absorption, Homeostasis, and Metabolism in the Healthy Term Infant. J Pediatr 167, S8-14, doi:10.1016/j.jpeds.2015.07.014 (2015).
  9. Berglund, S. K., Westrup, B., Hagglof, B., Hernell, O. & Domellof, M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics 131, 47-55, doi:10.1542/peds.2012-0989 (2013).
  10. Abrahamsson, T. R., Sinkiewicz, G., Jakobsson, T., Fredrikson, M. & Bjorksten, B. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J Pediatr Gastroenterol Nutr 49, 349-354, doi:10.1097/MPG.0b013e31818f091b (2009).
  11. Pannaraj, P. S. et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr, doi:10.1001/jamapediatrics.2017.0378 (2017).
  12. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147-1162, doi:10.1093/glycob/cws074 (2012).
  13. Marcobal, A. & Sonnenburg, J. L. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect 18 Suppl 4, 12-15, doi:10.1111/j.1469-0691.2012.03863.x (2012).
  14. Lonnerdal, B. Bioactive Proteins in Human Milk: Health, Nutrition, and Implications for Infant Formulas. J Pediatr 173 Suppl, S4-9, doi:10.1016/j.jpeds.2016.02.070 (2016).
  15. Vandenplas, Y., Zakharova, I. & Dmitrieva, Y. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br J Nutr 113, 1339-1344, doi:10.1017/S0007114515000823 (2015).
  16. Timby, N., Domellof, E., Hernell, O., Lonnerdal, B. & Domellof, M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 99, 860-868, doi:10.3945/ajcn.113.064295 (2014).
  17. Timby, N. et al. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr 60, 384-389, doi:10.1097/MPG.0000000000000624 (2015).
  18. Lack, G. The concept of oral tolerance induction to foods. Clin Biochem 47, 715, doi:10.1016/j.clinbiochem.2014.05.023 (2014).
  19. Wong, G. W. Preventing Food Allergy in Infancy–Early Consumption or Avoidance? N Engl J Med 374, 1783-1784, doi:10.1056/NEJMe1601412 (2016).
  20. Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372, 803-813, doi:10.1056/NEJMoa1414850 (2015).
  21. Nwaru, B. I. et al. Timing of infant feeding in relation to childhood asthma and allergic diseases. J Allergy Clin Immunol 131, 78-86, doi:10.1016/j.jaci.2012.10.028 (2013).
  22. Lack, G. et al. Factors associated with the development of peanut allergy in childhood. N Engl J Med 348, 977-985, doi:10.1056/NEJMoa013536 (2003).
  23. Abrahamsson, T. R. et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129, 434-440, 440 e431-432, doi:10.1016/j.jaci.2011.10.025 (2012).
  24. Nylund, L. et al. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol 13, 12, doi:10.1186/1471-2180-13-12 (2013).
  25. Fujimura, K. E. & Lynch, S. V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17, 592-602, doi:10.1016/j.chom.2015.04.007 (2015).
  26. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22, 1187-1191, doi:10.1038/nm.4176 (2016).
  27. Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends Mol Med 21, 109-117, doi:10.1016/j.molmed.2014.12.002 (2015).
  28. Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 690-703, doi:10.1016/j.chom.2015.04.004 (2015).
  29. Jakobsson, H. E. et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 63, 559-566, doi:10.1136/gutjnl-2012-303249 (2014).
  30. Stenius, F. et al. Lifestyle factors and sensitization in children – the ALADDIN birth cohort. Allergy 66, 1330-1338, doi:10.1111/j.1398-9995.2011.02662.x (2011).
  31. Alm, J. S. et al. An anthroposophic lifestyle and intestinal microflora in infancy. Pediatr Allergy Immunol 13, 402-411 (2002).
  32. Hesla, H. M. et al. Impact of lifestyle on the gut microbiota of healthy infants and their mothers-the ALADDIN birth cohort. FEMS Microbiol Ecol 90, 791-801, doi:10.1111/1574-6941.12434 (2014).
  33. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565-569, doi:10.1126/science.aad3369 (2016).
  34. Crane, J. et al. Is yoghurt an acceptable alternative to raw milk for reducing eczema and allergy in infancy? Clin Exp Allergy 48, 604-606, doi:10.1111/cea.13121 (2018).
  35. Berni Canani, R. et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J Allergy Clin Immunol 129, 580-582, 582 e581-585, doi:10.1016/j.jaci.2011.10.004 (2012).
  36. Berni Canani, R. et al. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol 139, 1906-1913 e1904, doi:10.1016/j.jaci.2016.10.050 (2017).
  37. Tang, M. L. et al. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J Allergy Clin Immunol 135, 737-744 e738, doi:10.1016/j.jaci.2014.11.034 (2015).
  38. Harb, T., Matsuyama, M., David, M. & Hill, R. J. Infant Colic-What works: A Systematic Review of Interventions for Breast-fed Infants. J Pediatr Gastroenterol Nutr 62, 668-686, doi:10.1097/MPG.0000000000001075 (2016).
  39. Sung, V. et al. Lactobacillus reuteri to Treat Infant Colic: A Meta-analysis. Pediatrics 141, doi:10.1542/peds.2017-1811 (2018).
  40. Gutierrez-Castrellon, P. et al. Efficacy of Lactobacillus reuteri DSM 17938 for infantile colic: Systematic review with network meta-analysis. Medicine (Baltimore) 96, e9375, doi:10.1097/MD.0000000000009375 (2017).

 

4-6 månader

  1. Pelto, G. H., Zhang, Y. & Habicht, J. P. Premastication: the second arm of infant and young child feeding for health and survival? Matern Child Nutr 6, 4-18 (2010).
  2. Chambers, L. Complementary feeding: Vegetables first, frequently and in variety. Nutrition Bulletin 41, 142-146 (2016).
  3. Barends, C., de Vries, J. H., Mojet, J. & de Graaf, C. Effects of starting weaning exclusively with vegetables on vegetable intake at the age of 12 and 23 months. Appetite 81, 193-199, doi:10.1016/j.appet.2014.06.023 (2014).
  4. L.M., M. J. A. N. S. J. A. L. Y. Variety is the spice of life: Strategies for promoting fruit and vegetable acceptance during infancy. Physiology & behavior 94, 29-38, doi:0.1016/j.physbeh.2007.11.014 (2008).
  5. Gerrish, C. J. & Mennella, J. A. Flavor variety enhances food acceptance in formula-fed infants. Am J Clin Nutr 73, 1080-1085 (2001).
  6. Maier, A. S., Chabanet, C., Schaal, B., Leathwood, P. D. & Issanchou, S. N. Breastfeeding and experience with variety early in weaning increase infants’ acceptance of new foods for up to two months. Clin Nutr 27, 849-857, doi:10.1016/j.clnu.2008.08.002 (2008).
  7. Maier, A., Chabanet, C., Schaalc, B., Issanchoub, S., Leathwooda, P. . Effects of repeated exposure on acceptance of initially disliked vegetables in 7-month old infants. Food Quality and Preference 18, 1023-1032 (2007).
  8. Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372, 803-813, doi:10.1056/NEJMoa1414850 (2015).
  9. Perkin, M. R. et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. N Engl J Med 374, 1733-1743, doi:10.1056/NEJMoa1514210 (2016).
  10. Lack, G. et al. Factors associated with the development of peanut allergy in childhood. N Engl J Med 348, 977-985, doi:10.1056/NEJMoa013536 (2003).
  11. Andren Aronsson, C. et al. Effects of Gluten Intake on Risk of Celiac Disease: A Case-Control Study on a Swedish Birth Cohort. Clin Gastroenterol Hepatol 14, 403-409 e403, doi:10.1016/j.cgh.2015.09.030 (2016).
  12. Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med 371, 1295-1303, doi:10.1056/NEJMoa1400697 (2014).
  13. Schwartz, C., Chabanet, C., Lange, C., Issanchou, S. & Nicklaus, S. The role of taste in food acceptance at the beginning of complementary feeding. Physiol Behav 104, 646-652, doi:10.1016/j.physbeh.2011.04.061 (2011).

 

6-12 månader

  1. Northstone, K., Emmett, P., Nethersole, F., Pregnancy, A. S. T. A. L. S. o. & Childhood. The effect of age of introduction to lumpy solids on foods eaten and reported feeding difficulties at 6 and 15 months. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association 14, 43-54 (2001).
  2. Coulthard, H., Harris, G. & Emmett, P. Delayed introduction of lumpy foods to children during the complementary feeding period affects child’s food acceptance and feeding at 7 years of age. Maternal & child nutrition 5, 75-85, doi:10.1111/j.1740-8709.2008.00153.x (2009).
  3. Blossfeld, I., Collins, A., Kiely, M. & Delahunty, C. Texture preferences of 12-month-old infants and the role of early experiences. Food Quality and Preference 18, 396-404 (2007).
  4. Lumsden, A. J. & Cooper, J. G. The choking hazard of grapes: a plea for awareness. Arch Dis Child 102, 473-474, doi:10.1136/archdischild-2016-311750 (2017).
  5. Taylor, R. W. et al. Effect of a Baby-Led Approach to Complementary Feeding on Infant Growth and Overweight: A Randomized Clinical Trial. JAMA Pediatr 171, 838-846, doi:10.1001/jamapediatrics.2017.1284 (2017).
  6. van den Engel-Hoek, L., van Hulst, K. C., van Gerven, M. H., van Haaften, L. & de Groot, S. A. Development of oral motor behavior related to the skill assisted spoon feeding. Infant behavior & development 37, 187-191, doi:10.1016/j.infbeh.2014.01.008 (2014).
  7. Scheers, N., Rossander-Hulthen, L., Torsdottir, I. & Sandberg, A. S. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)). Eur J Nutr 55, 373-382, doi:10.1007/s00394-015-0857-6 (2016).
  8. Hard Af Segerstad, E. M. et al. Daily Intake of Milk Powder and Risk of Celiac Disease in Early Childhood: A Nested Case-Control Study. Nutrients 10, doi:10.3390/nu10050550 (2018).
  9. Klenovics, K. S. et al. Advanced glycation end products in infant formulas do not contribute to insulin resistance associated with their consumption. PLoS One 8, e53056, doi:10.1371/journal.pone.0053056 (2013).
  10. Almquist-Tangen, G. D., J.; Roswall, J.; Bergman, S.; Alm, B. . Milk cereal drink increases BMI risk at 12 and 18 months, but formula does not. Acta Pædiatrica 102, 1174-1179 (2013).
  11. Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 690-703, doi:10.1016/j.chom.2015.04.004 (2015).
  12. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222-227, doi:10.1038/nature11053 (2012).

 

12-24 månader

  1. Bonuck, K. A., V. Huang, and J. Fletcher. 2010. “Inappropriate Bottle Use: An Early Risk for Overweight? Literature Review and Pilot Data for a Bottle-Weaning Trial.” Matern Child Nutr 6, no. 1 (Jan): 38-52. http://dx.doi.org/10.1111/j.1740-8709.2009.00186.x.
  2. Carruth, B. R., et al. 2004. “Prevalence of Picky Eaters among Infants and Toddlers and Their Caregivers’ Decisions About Offering a New Food.” J Am Diet Assoc 104, no. 1 Suppl 1 (Jan): s57-64. http://dx.doi.org/10.1016/j.jada.2003.10.024.
  3. Satter, E. 1995. “Feeding Dynamics: Helping Children to Eat Well.” J Pediatr Health Care 9, no. 4 (Jul-Aug): 178-84.

 

2-5 år

  1. Vaughn, A. E. et al. Fundamental constructs in food parenting practices: a content map to guide future research. Nutr Rev 74, 98-117, doi:10.1093/nutrit/nuv061 (2016).
  2. Cooke, L. J., Chambers, L. C., Anez, E. V. & Wardle, J. Facilitating or undermining? The effect of reward on food acceptance. A narrative review. Appetite 57, 493-497, doi:10.1016/j.appet.2011.06.016 (2011).
  3. Blissett, J. Relationships between parenting style, feeding style and feeding practices and fruit and vegetable consumption in early childhood. Appetite 57, 826-831, doi:10.1016/j.appet.2011.05.318 (2011).
  4. Hausner, H., Olsen, A. & Moller, P. Mere exposure and flavour-flavour learning increase 2-3 year-old children’s acceptance of a novel vegetable. Appetite 58, 1152-1159, doi:10.1016/j.appet.2012.03.009 (2012).
  5. de Wild, V. W., de Graaf, C. & Jager, G. Effectiveness of flavour nutrient learning and mere exposure as mechanisms to increase toddler’s intake and preference for green vegetables. Appetite 64, 89-96, doi:10.1016/j.appet.2013.01.006 (2013).

 

Celiaki

  1. Bjorck, S., Brundin, C., Lorinc, E., Lynch, K. F. & Agardh, D. Screening detects a high proportion of celiac disease in young HLA-genotyped children. J Pediatr Gastroenterol Nutr 50, 49-53, doi:10.1097/MPG.0b013e3181b477a6 (2010).
  2. McAllister, B. P., Williams, E. & Clarke, K. A Comprehensive Review of Celiac Disease/Gluten-Sensitive Enteropathies. Clin Rev Allergy Immunol, doi:10.1007/s12016-018-8691-2 (2018).
  3. Lebwohl, B. et al. Mucosal healing and risk for lymphoproliferative malignancy in celiac disease: a population-based cohort study. Ann Intern Med 159, 169-175, doi:10.7326/0003-4819-159-3-201308060-00006 (2013).
  4. Andren Aronsson, C. et al. Effects of Gluten Intake on Risk of Celiac Disease: A Case-Control Study on a Swedish Birth Cohort. Clin Gastroenterol Hepatol 14, 403-409 e403, doi:10.1016/j.cgh.2015.09.030 (2016).
  5. Liu, E. et al. Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med 371, 42-49, doi:10.1056/NEJMoa1313977 (2014).
  6. Lionetti, E. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med 371, 1295-1303, doi:10.1056/NEJMoa1400697 (2014).
  7. Olivares, M. et al. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 6, 36, doi:10.1186/s40168-018-0415-6 (2018).
  8. Kemppainen, K. M. et al. Factors That Increase Risk of Celiac Disease Autoimmunity After a Gastrointestinal Infection in Early Life. Clin Gastroenterol Hepatol 15, 694-702 e695, doi:10.1016/j.cgh.2016.10.033 (2017).

 

Mat på naturliga råvaror

  1. Gardner, C. D. et al. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA 319, 667-679, doi:10.1001/jama.2018.0245 (2018).
  2. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565-569, doi:10.1126/science.aad3369 (2016).
  3. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560-564, doi:10.1126/science.aad3503 (2016).
  4. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212-215, doi:10.1038/nature16504 (2016).
  5. Wang, Y. et al. High Molecular Weight Barley beta-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Front Microbiol 7, 129, doi:10.3389/fmicb.2016.00129 (2016).
  6. Sandberg, J. Whole grain cereal products and baseline gut microbiota composition in metabolic and appetite regulation in healthy humans – Emphasizing rye and barley, Lund University, (2017).
  7. Johnson, W. et al. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. Int J Obes (Lond) 36, 535-541, doi:10.1038/ijo.2011.238 (2012).
  8. Shalitin, S. & Kiess, W. Putative Effects of Obesity on Linear Growth and Puberty. Horm Res Paediatr 88, 101-110, doi:10.1159/000455968 (2017).
  9. Aksglaede, L., Sorensen, K., Petersen, J. H., Skakkebaek, N. E. & Juul, A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 123, e932-939, doi:10.1542/peds.2008-2491 (2009).
  10. Sorensen, K., Aksglaede, L., Petersen, J. H. & Juul, A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. J Clin Endocrinol Metab 95, 263-270, doi:10.1210/jc.2009-1478 (2010).
  11. Biro, F. M. et al. Onset of breast development in a longitudinal cohort. Pediatrics 132, 1019-1027, doi:10.1542/peds.2012-3773 (2013).
  12. Carwile, J. L. et al. Sugar-sweetened beverage consumption and age at menarche in a prospective study of US girls. Hum Reprod 30, 675-683, doi:10.1093/humrep/deu349 (2015).

 

Socker

  1. Sheiham, A. & James, W. P. A reappraisal of the quantitative relationship between sugar intake and dental caries: the need for new criteria for developing goals for sugar intake. BMC Public Health 14, 863, doi:10.1186/1471-2458-14-863 (2014).
  2. Avena, N. M., Rada, P. & Hoebel, B. G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32, 20-39, doi:10.1016/j.neubiorev.2007.04.019 (2008).
  3. Yamamoto, T. Brain mechanisms of sweetness and palatability of sugars. Nutr Rev 61, S5-9 (2003).
  4. Sclafani, A., Touzani, K. & Bodnar, R. J. Dopamine and learned food preferences. Physiol Behav 104, 64-68, doi:10.1016/j.physbeh.2011.04.039 (2011).
  5. Burger, K. S. & Stice, E. Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. Am J Clin Nutr 95, 810-817, doi:10.3945/ajcn.111.027003 (2012).
  6. Ingves, S. et al. A randomized cross-over study of the effects of macronutrient composition and meal frequency on GLP-1, ghrelin and energy expenditure in humans. Peptides 93, 20-26, doi:10.1016/j.peptides.2017.04.011 (2017).
  7. Lennerz, B. S. et al. Effects of dietary glycemic index on brain regions related to reward and craving in men. Am J Clin Nutr 98, 641-647, doi:10.3945/ajcn.113.064113 (2013).
  8. Welsh, J. A., Karpen, S. & Vos, M. B. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988-1994 to 2007-2010. J Pediatr 162, 496-500 e491, doi:10.1016/j.jpeds.2012.08.043 (2013).
  9. Beysen, C. et al. Dose-dependent quantitative effects of acute fructose administration on hepatic de novo lipogenesis in healthy humans. Am J Physiol Endocrinol Metab, doi:10.1152/ajpendo.00470.2017 (2018).
  10. Hjorth, M. F., Damsgaard, C. T., Michaelsen, K. F., Astrup, A. & Sjodin, A. Markers of metabolic health in children differ between weekdays–the result of unhealthier weekend behavior. Obesity (Silver Spring) 23, 733-736, doi:10.1002/oby.21034 (2015).
  11. Maersk, M. et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95, 283-289, doi:10.3945/ajcn.111.022533 (2012).
  12. Schwarz, J. M. et al. Effects of Dietary Fructose Restriction on Liver Fat, De Novo Lipogenesis, and Insulin Kinetics in Children With Obesity. Gastroenterology 153, 743-752, doi:10.1053/j.gastro.2017.05.043 (2017).

 

Ätsvårigheter

  1. Aldridge, V. K., T. M. Dovey, C. I. Martin, and C. Meyer. “Identifying Clinically Relevant Feeding Problems and Disorders.” J Child Health Care 14, no. 3 (Sep 2010): 261-70. http://dx.doi.org/10.1177/1367493510370456.
  2. Almquist-Tangen, G., et al. 2013. “Milk Cereal Drink Increases Bmi Risk at 12 and 18 Months, but Formula Does Not.” Acta Paediatr 102, no. 12 (Dec): 1174-9. http://dx.doi.org/10.1111/apa.12418.
  3. Barkmeier-Kraemer, J. M., et al. 2017. “Preliminary Study of a Caregiver-Based Infant and Child Feeding and Swallowing Screening Tool.” J Pediatr Gastroenterol Nutr 64, no. 6 (Jun): 979-983. http://dx.doi.org/10.1097/MPG.0000000000001442.
  4. Chatoor, I., and J. Ganiban. 2003 “Food Refusal by Infants and Young Children: Diagnosis and Treatment.” Cognitive and Behavioral Practice  10, no. 2: 138-146.
  5. Manikam, R., and J. A. Perman. 2000. “Pediatric Feeding Disorders.” J Clin Gastroenterol 30, no. 1 (Jan): 34-46.
  6. Rommel, N., et al. 2003. “The Complexity of Feeding Problems in 700 Infants and Young Children Presenting to a Tertiary Care Institution.” J Pediatr Gastroenterol Nutr 37, no. 1 (Jul): 75-84.
  7. Sharp, W. G., et al. 2010. “Pediatric Feeding Disorders: A Quantitative Synthesis of Treatment Outcomes.” Clin Child Fam Psychol Rev 13, no. 4 (Dec): 348-65. http://dx.doi.org/10.1007/s10567-010-0079-7.

 

Graviditeten

  1. Schaal, B., Marlier, L. & Soussignan, R. Human foetuses learn odours from their pregnant mother’s diet. Chem Senses 25, 729-737 (2000).
  2. Gerrish, C. J. & Mennella, J. A. Flavor variety enhances food acceptance in formula-fed infants. Am J Clin Nutr 73, 1080-1085 (2001).
  3. Mennella, J. A., Johnson, A. & Beauchamp, G. K. Garlic ingestion by pregnant women alters the odor of amniotic fluid. Chem Senses 20, 207-209 (1995).
  4. Hauser, G. J., Chitayat, D., Berns, L., Braver, D. & Muhlbauer, B. Peculiar odours in newborns and maternal prenatal ingestion of spicy food. Eur J Pediatr 144, 403 (1985).
  5. Villamor, E. & Cnattingius, S. Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 368, 1164-1170, doi:10.1016/S0140-6736(06)69473-7 (2006).
  6. Yu, Z. et al. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PloS one 8, e61627, doi:10.1371/journal.pone.0061627 (2013).
  7. Lindsay, R. S. et al. Inverse changes in fetal insulin-like growth factor (IGF)-1 and IGF binding protein-1 in association with higher birth weight in maternal diabetes. Clinical endocrinology 66, 322-328, doi:10.1111/j.1365-2265.2006.02719.x (2007).
  8. Werner, B. Growth In Sweden. Surveillance of growth patterns and epidemiological monitoring of secular changes in height and weight among children and adolescents., Karolinska Institutet, (2007).
  9. Ludwig, D. S. & Currie, J. The association between pregnancy weight gain and birthweight: a within-family comparison. Lancet 376, 984-990, doi:10.1016/S0140-6736(10)60751-9 (2010).
  10. Meuwisse, G., Otterblad Olausson, P. . Ökad födelsevikt i Norden. Allt större andel nyfödda väger över fyra kilo. Läkartidningen 95 (1998).
  11. Stothard, K. J., Tennant, P. W., Bell, R. & Rankin, J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA : the journal of the American Medical Association 301, 636-650, doi:10.1001/jama.2009.113 (2009).
  12. Catalano, P. M. & Shankar, K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ 356, j1, doi:10.1136/bmj.j1 (2017).
  13. Cnattingius, S. et al. Maternal obesity and risk of preterm delivery. JAMA : the journal of the American Medical Association 309, 2362-2370, doi:10.1001/jama.2013.6295 (2013).
  14. Kitzmiller, J. L. et al. Managing preexisting diabetes for pregnancy: summary of evidence and consensus recommendations for care. Diabetes care 31, 1060-1079, doi:10.2337/dc08-9020 (2008).
  15. Duran, A. et al. Introduction of IADPSG criteria for the screening and diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower cost in a large cohort of pregnant women: the St. Carlos Gestational Diabetes Study. Diabetes Care 37, 2442-2450, doi:10.2337/dc14-0179 (2014).
  16. International Association of, D. et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33, 676-682, doi:10.2337/dc09-1848 (2010).
  17. Luo, Z. C. et al. Maternal glucose tolerance in pregnancy affects fetal insulin sensitivity. Diabetes care 33, 2055-2061, doi:10.2337/dc10-0819 (2010).
  18. Assaf-Balut, C. et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS One 12, e0185873, doi:10.1371/journal.pone.0185873 (2017).
  19. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nature medicine 22, 1187-1191, doi:10.1038/nm.4176 (2016).
  20. Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 690-703, doi:10.1016/j.chom.2015.04.004 (2015).
  21. Ferretti, P. et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 24, 133-145 e135, doi:10.1016/j.chom.2018.06.005 (2018).
  22. Garcia-Larsen, V. et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med 15, e1002507, doi:10.1371/journal.pmed.1002507 (2018).
  23. van Zanten, G. C. et al. The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PLoS One 7, e47212, doi:10.1371/journal.pone.0047212 (2012).
  24. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565-569, doi:10.1126/science.aad3369 (2016).